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Example of an Einstein Ring. (Cosmic Horseshoe, LRG 3-
757. Image Credit: ESA/Hubble & NASA)

Gravitational Lensing. (Image Credit: NASA, ESA & L. Calçada)

Project Overview

• To date, several hundred strong lenses have been found across 

various surveys. However, over the next few years, surveys such as 

Euclid and the Legacy Survey of Space and Time (LSST) will generate 

billions of images containing many tens of thousands of lensing 

systems, so a more efficient method is needed to cope with such a 

large data set.

• Hence, this project aims to use machine learning to develop a fast, 

automated approach to model strong gravitational lenses straight 

from images, through training a convolutional neural network 

(CNN).This CNN can carry out the complex task of modelling strong 

lens systems with similar accuracy to parametric techniques but far 

more quickly. 

• We aim to investigate the effectiveness of using CNNs to estimate 

lens profile parameters (Einstein radius, ellipticity and orientation) 

when applied to upcoming survey-style images, and compare this to 

conventional parameter-fitting techniques.

Introduction

• Strong galaxy-galaxy gravitational lensing is the distortion of the paths of light rays from a 

background galaxy into arcs or rings as viewed from Earth, caused by the gravitational field of an 

intervening foreground lens galaxy.

• Lensing provides a useful way of investigating the properties of distant galaxies and the early 

Universe, but to do so requires accurate modelling of the lens' mass profile. Conventionally this is 

done through relatively slow parametric techniques to work out the mass profile parameters.



Uses of Gravitational Lensing
When modelled correctly, lensing can:
a) help us constrain the distribution of mass (mass profile) and the dark matter content of the 

foreground lensing galaxies,
b) be combined with redshift to aid in galaxy evolution models and dark matter simulations,
c) provide a distorted yet magnified view of the source galaxy behind the lens; techniques have been 

developed to reverse the lensing effect to obtain the appearance of these high-redshift galaxies.

What's Been Done Already?
• Conventional Lens Modelling: This is typically done using parametric parameter-fitting techniques

such as PyAutoLens (Nightingale et al. 2018), where an automated process adjusts parameters of a 
mass profile to best fit the observed image. However, this requires manually-set initial ‘guess’ values 
(priors) and a large amount of time and computing power.

• CNNs: Hezaveh et al. (2017) demonstrated the use of CNNs to model lenses much faster than previous 
methods. Levasseur et al. (2017) incorporated into this an approximate Bayesian framework, allowing 
it to predict its own errors.

Convolutional Neural Networks (CNNs)
• Just as the brain is made up of interconnected neurons, a neural 

network consists of layers of nodes, with nodes connected between 
layers and the strengths of these connections given by a 'weight' value.

• CNNs are a subset of neural networks that have grid-like layers mainly 
for analysing images, and apply filters in order to extract information. 
An example CNN is shown in below.

• CNNs can be improved through training, typically requiring a minimum 
of tens of thousands of training images. As not enough images of real 
lenses exist, they must be simulated instead.

Above: Neurons in the 
brain. (Credit: A Moment 
of Science, 
https://indianapublicme
dia.org/amomentofscien
ce/lose-neurons/)
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Above: Neurons in a neural 
network.

Left: Typical CNN structure.
Pooling layers decrease
image size, other layers
extract features and
relationships in the data.

An observed gravitational lens. (Image Credit: 
NASA, ESA, A. Bolton (Harvard-Smithsonian CfA) 
and the SLACS Team)



Investigation
• The CNN was trained on 50,000 images 

generated to resemble expected observations 
by Euclid (VIS band) and LSST (g, r, & i bands).

• Containing six convolutional layers, the CNN 
learned to predict values for the lensing 
galaxies' Einstein radii (size of the ring), and 
complex ellipticity components (which can be 
converted to ellipticity and orientation). 

• The accuracy of the network was then 
obtained by testing on separate image data 
sets.

• Several aspects of the training were 
investigated, by evaluating the performance of 
the network:

• for Euclid- and LSST-like data, 
• for images with and without colour, 
• for images with and without lens light, 
• and when the mass and light profiles 

of the lens are changed with respect to 
each other.

Results
• The CNN is now at a stage where it can accurately measure mass profile parameters for image 

catalogues simulated in the style of expected LSST and Euclid observations, for example 
those seen above.

• While network performance improved for Euclid images over single-band LSST images, it did 
equally well or better than Euclid when given multi-band LSST g,r,i images, which allow it to
more easily distinguish between the lens and source (for example, see bottom left).

• The investigation provided other insights as well that can inform future training. For example, 
CNN errors are shown below when test images are binned by ellipticity. We see that while
more elliptical lenses make it easier to obtain orientation (as expected), the other parameters 
become increasingly harder to predict.

Left to right: Simulated Euclid, Euclid with lens light removed, LSST r-band, and LSST g,r,i-band images.

Differences between Einstein radii predicted by the CNN and
their true values for Euclid VIS, LSST r-band and LSST g,r,i-bands,
both with and without their lens light.

Magnitudes of differences between CNN-predicted parameters and true values as functions of ellipticity. 
From left to right: Einstein radius, orientation and ellipticity. Results include Euclid VIS, LSST r-band and 
LSST g,r,i-band images. Solid and dashed lines correspond to images with lens light included and removed, 
respectively.
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Comparing to conventional fitting
• Shifting focus to Euclid-style images, the CNN was retrained on a larger 

set of more complex images (figure on the right).
• Additionally, changes were made to the CNN to allow it to predict its 

own uncertainties.
• We compared the CNN to a conventional parameter-fitting technique, 

PyAutoLens, for different test sets, such as images with real HUDF 
sources, with & without line-of-sight structure (LOSS).

• We also tried a combination of the two techniques, using CNN 
predictions as priors for PyAutoLens.

Summary
• This project has so far achieved high accuracies for parameter estimation, 

on par with conventional fitting techniques, and with future training could 
even outperform such techniques.

• Regardless, the combination of CNNs with conventional parameter-fitting 
approaches is a promising new method that can achieve even better 
results.

• More work is needed on testing the CNN and this combination method, 
testing on highly realistic images containing EAGLE hydrodynamically-
simulated lenses, with potential LOS structure.

• Additionally, work will be done training and testing on power law profiles, 
the more general form of the currently investigated singular-isothermal
ellipsoid (SIE) lens models.

Results
• First, the CNN was fine-tuned so that the uncertainties it predicted were suitable, i.e. that its 1-sigma 

uncertainty predictions actually covered ~68% of the results (figure on the left).
• Current work suggests that while CNN accuracy appears to be equal to or slightly worse than 

PyAutoLens, the combination of the two is significantly better than either one separately (see below).

Fractional error 
in axis ratio (1-e) 
for different 
fitting methods


